Determinants of action potential propagation in cerebellar Purkinje cell axons.
نویسندگان
چکیده
Axons have traditionally been viewed as highly faithful transmitters of action potentials. Recently, however, experimental evidence has accumulated to support the idea that under some circumstances axonal propagation may fail. Cerebellar Purkinje neurons fire highfrequency simple spikes, as well as bursts of spikes in response to climbing fiber activation (the "complex spike"). Here we have visualized the axon of individual Purkinje cells to directly investigate the relationship between somatic spikes and axonal spikes using simultaneous somatic whole-cell and cell-attached axonal patch-clamp recordings at 200-800 microm from the soma. We demonstrate that sodium action potentials propagate at frequencies up to approximately 260 Hz, higher than simple spike rates normally observed in vivo. Complex spikes, however, did not propagate reliably, with usually only the first and last spikes in the complex spike waveform being propagated. On average, only 1.7 +/- 0.2 spikes in the complex spike were propagated during resting firing, with propagation limited to interspike intervals above approximately 4 msec. Hyperpolarization improved propagation efficacy without affecting total axonal spike number, whereas strong depolarization could abolish propagation of the complex spike. These findings indicate that the complex spike waveform is not faithfully transmitted to downstream synapses and that propagation of the climbing fiber response may be modulated by background activity.
منابع مشابه
Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation.
Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in ma...
متن کاملIKKϵ Signaling: Not Just NF-κB
Hausser, M. (2005). Determinants of action potential propagation in cerebellar Purkinje cell axons. J. Neurosci. 25, 464–472. 16. Borst, J.G., and Sakmann, B. (1999). Effect of changes in action potential shape on calcium currents and transmitter release in a calyx-type synapse of the rat auditory brainstem. Philos. Trans. R. Soc. Lond. B 354, 347–355. 17. Nicholls, J., and Wallace, B.G. (1978)...
متن کاملP 18: Alterations of Electrophysiological Activity of Cerebellar Pukinje Cells of Rats Under Harmaline Toxicity
Introduction: Beta-carboline alkaloids of P. harmala are shown to have immune-modulatory effects in several studies. Extracts of this plant have significant anti-inflammatory effect via the inhibition of some inflammatory mediators including PGE2 and TNF-α. In postmortem studies, structural alterations to the cerebellum have been recognized, including Purkinje cell loss being re...
متن کاملP 17: Electrophysiological Effects of Cannabinoid Receptor Antagonist AM251 on Harmaline Toxicity in Rat’s Cerebellar Vermis Slices
Introduction: The Cannabinoid receptors (CBR) densities are high within the cerebellum. Cannabinoid receptors manipulations have been reported to cause altering the cerebellar functions. harmaline have immune-modulatory effects in several studies. i.e., significant anti-inflammatory effect via the inhibition of prostaglandin E2 (PGE2) and tumor necrosis factor alpha (TNF-α). Endocannabino...
متن کاملAxonal propagation of simple and complex spikes in cerebellar Purkinje neurons.
In cerebellar Purkinje neurons, the reliability of propagation of high-frequency simple spikes and spikelets of complex spikes is likely to regulate inhibition of Purkinje target neurons. To test the extent to which a one-to-one correspondence exists between somatic and axonal spikes, we made dual somatic and axonal recordings from Purkinje neurons in mouse cerebellar slices. Somatic action pot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 2 شماره
صفحات -
تاریخ انتشار 2005